
FINDING NONOVERLAPPING SUBSTRUCTURES OF A SPARSEMATRIX�ALI PINARy AND VIRGINIA VASSILEVSKAzAbstrat. Many appliations of sienti� omputing rely on sparse matrix omputations, thuseÆient implementations of sparse matrix kernels are ruial for the overall eÆieny of these ap-pliations. Due to the low ompute-to-memory ratio and irregular memory aess patterns, theperformane of sparse matrix kernels is often far away from the peak performane on modern pro-essors. Alternative matrix representations have been proposed, where the matrix A is split into Adand As, so that Ad ontains all dense bloks of a spei�ed form in the matrix, and As ontains theremaining entries. This failitates using dense matrix kernels on the entries of Ad, produing bettermemory performane. We study the problem of �nding a maximum number of nonoverlapping ret-angular dense bloks in a sparse matrix. We show that the maximum nonoverlapping dense bloksproblem is NP-omplete by a redution from the maximum independent set problem on ubi planargraphs. We also propose a 2=3-approximation algorithm for 2� 2 bloks that runs in linear time inthe number of nonzeros in the matrix. We disuss alternatives to retangular bloks suh as diagonalbloks and ross bloks and present omplexity analysis and approximation algorithms.Key words. Memory performane, memory-eÆient data strutures, high-performane om-puting, sparse matries, independent sets, NP-ompleteness, approximation algorithms.1. Introdution. Sparse matries lie at the heart of many omputation-intensiveappliations suh as �nite-element simulations, deision support systems in manage-ment siene, power systems analysis, iruit simulations, and information retrieval.The performane of these appliations relies diretly on the performane of the em-ployed sparse matrix kernels. The poor memory performane of sparse matrix opera-tions on modern proessors is arguably the most ruial problem in high performaneomputing. To overome this memory bottlenek, alternative, memory-friendly datastrutures for sparse matries have been investigated. One ommon approah is toexploit the speial substrutures in a sparse matrix, suh as small dense matries, toderease the number of extra load operations. In this paper, we study the problemof �nding a maximum number of nonoverlapping substrutures in a sparse matrix,with the objetive of improving the e�etiveness of sparse matrix data strutures thatexploit dense bloks.Conventional data strutures for sparse matries have two omponents: an ar-ray that stores oating-point entries of the matrix and arrays that store the nonzerostruture (i.e., pointers to the loations of the numerial entries). Exploiting spar-sity invariably requires using pointers, but pointers often lead to poor memory per-formane. One reason for the poor memory performane is that pointers ause anirregular memory aess pattern and thus poor spatial loality. Another importantreason, whih is often overlooked, is the extra load operations. Eah operation on anonzero entry requires loading the loation of that nonzero before loading the atualoating point number. For instane, sparse matrix vetor multipliation, whih is oneof the most important kernels in numerial algorithms, requires three load operationsfor eah multiply-and-add operation. And it has been observed that this overhead is�This work was supported by the Diretor, OÆe of Siene, Division of Mathematial, Infor-mation, and Computational Sienes of the U.S. Department of Energy under ontrat DE-AC03-76SF00098.yCorresponding author. Computational Researh Division, Lawrene Berkeley National Labora-tory, (apinar�lbl.gov).z Computer Siene Department, Carnegie Mellon University, (virgi�s.mu.edu).1



2 A. Pinar and V. Vassilevska0BBB� x x xx xx x x xx x x 1CCCA = 0BBB� x xx x x xx x 1CCCA + 0BBB� xx x x 1CCCAA = A12 + A11Fig. 1.1. Matrix splitting.usually more ostly than the oating point operations [9℄.Reent studies have investigated improving memory performane of sparse ma-trix operations by reduing the number of extra load operations [9, 11, 13, 15℄. Bikand Wijsho� propose algorithms to detet partiular sparsity strutures of a matrix,suh as banded and bloked forms [4℄. Toledo [13℄ studies splitting the matrix asA = A12 + A11, where A12 inludes 1 � 2 bloks of the matrix (two nonzeros inonseutive positions on the same row), and A11 overs the remaining nonzeros, asillustrated in Fig. 1.1. Notie that it is suÆient to store one pointer for eah blokin A12. P�nar and Heath study the reordering problem to inrease the sizes of thesebloks [11℄. They propose a graph model to redue the matrix ordering problem tothe traveling salesperson problem. Vudu et al. study various bloking tehniquesto derease load operations and improve ahe utilization [15℄. Signi�ant speedupsin large experimental sets have been observed, whih motivates searhing for largerbloks in the matrix for better performane. The splitting operation an be gener-alized to exploit various substrutures. For instane, one an split the matrix intoA = Ad + As, where Ad ontains all spei�ed substrutures, and As ontains the re-maining entries. For a spei�ed substruture, having more entries in Ad merits fewerload operations, thus better memory performane. This alls for eÆient algorithmsto �nd a maximum number of nonoverlapping substrutures in a sparse matrix. Agreedy algorithm is suÆient to �nd a maximum number of nonoverlapping m � ndense matries when m = 1 or n = 1. However, this problem is muh harder whenm;n � 2.We study the problem of �nding a maximumnumber of nonoverlapping substru-tures of a sparse matrix, whih we all the maximum nonoverlapping substruturesproblem. We fous on m � n dense bloks as a substruture, sine they are om-mon in sparse matries arising in various appliations, and their usage an e�etivelyderease the number of extra load operations. We all this problem the maximumnonoverlapping dense bloks problem. In Setion 2, we de�ne the problem formallyand investigate its relation to the maximum independent set problem. We de�ne alass of graphs for whih the independent set problem is equivalent to the maximumnonoverlapping dense bloks problem. In Setion 3, we use this relation to prove thatthe maximum nonoverlapping dense bloks problem is NP-omplete. Our proof usesa redution from the maximum independent set problem on ubi planar graphs andadopts orthogonal drawings of planar graphs. Setion 4 presents an approximationalgorithm for the problem. Sine our tehniques will potentially be used at applia-tion run-time, we are interested in fast and e�etive heuristis for the preproessingost to be amortized over the speedups in subsequent sparse matrix operations. Ouralgorithms require only linear time and spae, and generate solutions whose sizesare within 2=3 of the optimal for 2 � 2 bloks. In Setion 5, we disuss alternative



Finding nonoverlapping substrutures of a sparse matrix 3patterns to retangular bloks. We show how the problems of �nding retangularand diagonal bloks an be transformed to eah other to onlude that �nding themaximum number of nonoverlapping diagonal bloks is NP-hard. We show how touse the approximation algorithm for retangular dense bloks to obtain a linear 2/3-approximation algorithm for diagonal bloks. We also disuss ross bloks and theirvariations. We present some open problems in Setion 6 and onlude with Setion 7.This problem has only reently started to draw the attention of the sparse matrixommunity, but has been studied under di�erent names as a ombinatorial optimiza-tion problem. Fowler et al. [6℄ study this problem as a geometri embedding problemand prove it is NP-Complete by redution from the 3-satis�ability problem (3SAT)1.Berman et al. [3℄ disuss a similar problem as the optimal tile salvage problem. Inthe optimal tile salvage problem, we are given an pN �pN region of the plane tiledwith unit squares, some of whih have been removed. The task is to �nd a maximumnumber of funtional nonoverlapping m � n tiled retangles. The di�erene betweenour problem and the optimal tile salvage problem is that in the tile salvage problemthe tiles are allowed to be in any orientation (m � n or n �m), whereas in our asethe orientation is �xed (only m � n). The NP-ompleteness proof of the tile salvageproblem by Berman et al. is based on the exibility in the orientation of the denseblok, and thus is not appliable to our problem. Berman et al. desribe a polynomialtime approximation sheme, whih for all Æ > 0, � = O(1=pÆ logM ), where M is theoptimal solution value, gives an (1 � �)-approximation. Their algorithm is based onmaximum planar H-mathing, whih runs in O(N1+Æ) steps, and an be applied to�nd square bloks where the two problems oinide. Baker [2℄ also has an algorithmfor square bloks, whih runs in O(8kN )-time and O(4kN ) spae and produes a(k � 1)=k-approximation. Hohbaum and Maass [8℄ also desribe an algorithm forsquare bloks that gives a (k � 1)=k-approximation, but runs in O(m2k2Nk2) timeto �nd m �m bloks on an N � N grid. Arikati et al. [1℄ study this problem as thetwo-dimensional pattern mathing problem, and desribe an approximation algorithmthat runs in O(N lgN ) time and produes solutions that are only O(1=plog logN )away from an optimal solution. They desribe another algorithm that runs in O(kN ),and produes solutions that are within (k � 1)=k of the optimal. For our purposes,we need algorithms that are very fast and do not require auxiliary data strutures.The greedy approximation algorithms we propose are very simple, spae-eÆient, andrequire only a single pass through the matrix.2. Preliminaries. In this setion we de�ne the problems formally, and presentde�nitions and some preliminary results that will be used in the following setions.2.1. Problem De�nition. We investigate the problem of �nding a maximumnumber of nonoverlapping matrix substrutures of presribed form and orientation.Definition 2.1. An m � n pattern is a 0-1 m � n matrix �. An oriented �-substruture of a matrix A is an m � n submatrix A1 in A so that A1(i; j) 6= 0 if�(i; j) = 1 for 1 � i � m, and 1 � j � n. Two substrutures A1 and A2 overlap ifthey share nonzero entry in A1 with oordinates (i1; j1) in A1 and (i2; j2) in A2 and�(i1; j1) = �(i2; j2) = 1.Given a partiular pattern �, we de�ne themaximum nonoverlapping �-substrutures(MNS) problem as follows.1This has been pointed to us by a reviewer after the ompletion of this work.



4 A. Pinar and V. VassilevskaGiven an M �N matrix A and integer K, does A ontain K disjoint�-substrutures?In this paper, we mostly fous on dense bloks due to their simpliity and their ef-fetiveness in speeding up sparse matrix operations. A dense blok of a matrix is asubmatrix of spei�ed size, all of whose entries are nonzero, i.e., it is a �-substruturewhere � is the all 1s matrix. We assoiate a dense blok with its upper left entry.Two bloks overlap if they share a matrix entry. Formally,Given an M � N matrix A = (aij), we say bij is an m � n denseblok in A i� akl 6= 0 for all k and l suh that i � k < i + m � Mand j � l < j + n � N . Two m � n bloks bij and bkl overlap i�jk � ij < m and jl � jj < n.We de�ne the maximum nonoverlapping dense bloks (MNDB) problem, whihrestrits the MNS problem to dense bloks as follows.Given an M �N matrix A, positive integers m and n that de�ne theblok size, and a positive integer K, does A ontain K disjoint m�ndense bloks?2.2. Intersetion Graphs. Although it is easy to �nd all spei�ed patterns ina matrix, what we seek is a subset of nonoverlapping bloks. In this sense, the MNSproblem is related to the maximum independent set (MIS) problem, whih is de�nedas �nding a maximum ardinality subset of verties I of a graph G suh that no twoverties in I are adjaent. We reveal the relation between the independent set andthe nonoverlapping bloks problems using intersetion graphs de�ned below.Definition 2.2. A graph G is an intersetion graph of the �-substrutures of amatrix A if there is a bijetion � between the verties of G and the substrutures ofA, suh that there is an edge in G between �(s1) and �(s2) if and only if s1 and s2overlap in A.We use G(A;m; n) to refer to the intersetion graph of dense m � n bloks inmatrix A. A maximum independent set on G(A;m; n) gives a maximum numberof nonoverlapping bloks in A. Thus the MNDB problem an be redued to themaximum independent set problem, whih is not even onstant fator approximable.However, MNDB is not as hard as the general MIS problem, and some blok inter-setion graphs have speial strutures, whih an be exploited for eÆient solutions.For instane, a greedy algorithm is suÆient to �nd a maximum number of nonover-lapping 1 � n and m � 1 bloks, sine these problems redue to a family of disjointmaximum independent set problems on interval graphs.We will now de�ne the lass of graphs that onstitute blok intersetion graphs.An intersetion graph of a set of 2� 2 dense bloks is an indued subgraph of the soalled X-grid whih onsists of the usual 2 dimensional grid, and diagonals for eahgrid square. In general, the intersetion graph of a set of m � n dense bloks is anindued subgraph of the Xmn grid. Below, we �rst de�ne an Xmn grid, and thenrestrit the de�nition to de�ne the graph lass X�mn that represent graphs that anbe intersetion graphs for matries.Definition 2.3. An M �N Xmn grid is a graph with vertex set V and edge setE, so that� V = fvij : 1 � i �M �m+ 1; 1 � j � N � n+ 1g



Finding nonoverlapping substrutures of a sparse matrix 5� E = f(vij; vkl) : vij ; vkl 2 V ; ji� kj < m and jj � lj < ngIn an Xmn grid, vertex vij orresponds to the blok bij in the matrix, and edgesorrespond to all possible overlaps between bloks. However, not all indued sub-graphs of the Xmn grid are intersetion graphs of a matrix. For example, if bij andbi+m;j are bloks in the matrix, then bi+1;j; : : : ; bi+m�1;j should also be in the inter-setion graph to ensure the intersetion graph represents all bloks. Therefore, wede�ne a graph lass X�mn, whih adds a losure property to an Xmn grid to oversuh ases.Definition 2.4. A graph G = (V;E) is in the graph lass X�mn if and only ifit is an indued subgraph of an Xmn grid and has the losure property so thatvij 2 V if 8i � k < i+m; j � l < j +m; 9vst : s � k < s +m and t � l < l + nThe losure property enfores that there is a vertex in the graph for eah denseblok in the matrix. Being an indued subgraph of an Xmn grid guarantees thatthere is an edge for eah overlap. The graphs in this lass are exatly the intersetiongraphs of the m�n bloks in a matrix, thus �nding a maximum independent set of agraph in this lass is equivalent to solving the MNDB problem of the orrespondingdense matrix bloks. This laim is formalized by the following lemma.Lemma 2.1. An instane of the MNDB problem for �nding m�n nonoverlappingdense bloks in a matrix A is equivalent to an instane of MIS for a graph in X�mn.Proof. We show a one-to-one orrespondene between intersetion graphs, andgraphs in X�mn. Eah dense blok bij orresponds to the vertex vij in G(A;m; n).By de�nition of the lass X�mn, G(A;m; n) 2 X�mn, and thus any instane of anMNDB problem an be redued to an independent set problem in a graph in X�mn.Given a graph G in X�mn, de�ne A = (aij), so that aij is a nonzero i� k � i <k + m and l � j < l + n for some vertex vkl in G. Observe that any dense blok inA must be represented by a vertex in G due to the losure property. Also, for anytwo adjaent verties in G, orresponding bloks interset in A, and no other bloksoverlap, due to the de�nition of edges in Xmn. Thus, a maximum ardinality subsetof nonoverlapping bloks in matrix A orresponds to a maximum independent set inG 2 X�mn.The following lemma shows that removing a subset of the verties along withtheir neighbors preserves the harateristis of the graph, providing the basis forgreedy approximation algorithms as will be presented in Setion 4.Lemma 2.2. Let G = (V;E) be a graph in X�mn, S � V a subset of verties,and N (S) = fu j (u; v) 2 E; v 2 S; u =2 Sg be the neighborhood of S in G. Then thegraph G0 indued by V n (S [N (S)) is still in X�mn.Proof. Removing a vertex and its neighbors in G orresponds to removing allnonzeros in a blok in the orresponding matrix. The remaining graph is the inter-setion graph of the resulting matrix.2.3. Planar Graphs and Orthogonal Drawings. A graph G is planar if andonly if there is an embedding of G on the sphere suh that no two edges have a pointin ommon besides possibly ommon end points. G is ubi planar if every vertex hasdegree 3.
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2 Fig. 2.1. Planar orthogonal drawingAn orthogonal drawing of a graph G is an embedding of G onto a 2-dimensionalretangular grid suh that every vertex is mapped to a grid point and every edge ismapped to a ontinuous path of grid line segments onneting the end points of theedge. When G is planar, the edge paths do not ross. An example of orthogonalembedding of a planar graph is illustrated in Fig. 2.1. No two edges share a gridpoint, and no edge path an go through a vertex unless this vertex is an end point ofthe edge orresponding to the path and is an end point of the path itself. Kant [10℄showed that every planar graph G with n verties and maximum degree 3 an bedrawn orthogonally on an O(n)� O(n) grid in polynomial time.The NP-ompleteness proof in the next setion uses a redution from the maxi-mum independent set (MIS) problem on ubi planar graphs and adopts orthogonaldrawings.3. Complexity. This setion proves that the MNDB problem is NP-ompleteusing a redution from the independent set problem on ubi planar graphs, whih isNP-omplete [7℄. The same result has been reported by Fowler et al. [6℄, by using aredution from 3-satis�ability. The tehnique used here is signi�antly di�erent thanFowler et al.'s. In this setion, we will use X� to refer to X�22 for simpliity. Thenext lemma explains how we an retain independent set harateristis of the problemafter transformations.Lemma 3.1. Let G = (V;E) be a graph, and u; v be two adjaent verties in G,so that all neighbors of u besides v are also neighbors of v. Let G0 = (V 0; E0) be thegraph G after vertex v is removed. The size of the maximum independent set in G isequal to the size of the maximum independent set in G0.Proof. If vertex v is in a maximum independent set I, then none of its neighborsare in I. Thus I 0 = I [fvg n fug is an independent set in G and in G0, and jI 0j = jIj.The following orollary will be used in our NP-ompleteness proof, as the stru-tures in Fig. 3.1(a) arise in our onstrution.Corollary 3.2. Let G 2 X� ontain the graph H in Fig. 3.1(a) as an induedsubgraph so that all verties exept for possibly v1; v2 and v3 have all of their neighborsin H. Then any instane (G, K) of MIS is equivalent to the instane (G0, K) of MISfor the graph G0 = G n fw1; w2g.Proof. By Lemma 3.1, we an remove w1 from the graph sine all neighbors ofx1 are neighbors of w1 as well. The redued graph is illustrated in Fig. 3.1(b). Againusing Lemma 3.1, we an remove w2 sine it overs all neighbors of x2. Furthermore,we an apply the same transformation in reverse order to add verties w1 and w2 tothe graph in Fig. 3.1().
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w1 Fig. 3.1. Transformation to preserve losure propertiesThe following lemma desribes how edges of a graph an be replaed by evenlength paths, while preserving independent set harateristis.Lemma 3.3. Let G = (V;E) be a graph and e = (vi; vj) 2 E be an edge. LetGe;k be the graph G with the edge e substituted by a simple path vi; w1; w2; : : : ; w2k; vjwhere k 2 Z+ and wi are new verties not in the original graph. Then there existsan independent set of size K in G i� there exists an independent set of size K + k inGe;k.Proof. We present the proof for k = 1, and the result follows by indution.SuÆieny: Let I be an independent set in G, then either vi 62 I or vj 62 I. Withoutloss of generality, assume vi 62 I, then I 0 = I [ fw1g is an independent set in Ge;k.Neessity: Let I 0 be an independent set in Ge;k. If w1 2 I 0, then vi 62 I 0, andI = I 0 n fw1g is an independent set in G. Symmetrially, if w2 2 I 0, then vj 62 I 0, andI = I 0 nfw2g is an independent set in G. If w1; w2 62 I 0, then I = I 0 is an independentset in G.We �rst analyze the omplexity for 2 � 2 bloks for larity of presentation, andthen extend our result to m � n bloks for m;n � 2.Theorem 3.4. Problem MNDB is NP-omplete for 2� 2 bloks.Proof. MNDB is learly in NP sine it is equivalent to a speial ase of MIS.To show NP-hardness, we use a redution from the independent set problemon ubi planar graphs, whih is NP-omplete [7℄. We �rst embed a ubi planargraph orthogonally onto a grid as disussed in Setion 2.3. Then we transform theembedded graph so that it is in X�. Our transformations preserve independent setharateristis so that an independent set in the transformed graph an be translatedto an independent set in the original graph. Finally we use Lemma 2.1 to relate theindependent set problem on a graph in X�, to the MNDB problem.Our transformations are loal. We �rst enlarge the grid to make room for thesetransformations by inserting k new grid points between adjaent points in the originalgrid. An example is illustrated in Fig. 3.2 for k = 1. After the enlargement, eahedge is now replaed by a path of k verties (whih we distinguish from the originalverties by alling them marks). Two adjaent verties in the original graph are nowat a distane k + 1, whih generates a k=2 � k=2 area around eah vertex for loaltransformations. This enlargement guarantees that di�erent transformations do notinterfere with eah other. In this proof, it is suÆient to use k = 100.
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Fig. 3.2. Enlargement operation on Fig. 2.1 (right) for k = 1.

vij vij+1

vi−1j vi−1j

vij+1Fig. 3.3. Bend transformationOur transformations onsist of 2 steps. The �rst step guarantees that the trans-formed graph is in X�, to satisfy De�nition 2.4. The seond step ensures that eahedge in the original graph is replaed by an even length path after the orthogonalembedding and transformations. Together, these steps transform the independentset problem on the ubi planar graph to an independent set problem on a graph inX�, and we an then onlude the NP-ompleteness of the MNDB problem usingLemma 2.1.Sine the underlying graph is ubi, its orthogonal embedding an be deomposedinto paths, bends (illustrated in Fig. 3.3 (left)), and T- juntions (illustrated inFig. 3.4 (left)). Bends are marks for whih an edge hanges diretion, and T-juntionsare the atual verties of the ubi planar graph. While bends and T-juntions requiretransformations to onvert the embedded graph into a graph in X�, paths will notause suh problems.Consider a bend vij onneted to two other marks vi�1j and vij+1. In a graph inX�, there must be an edge between vi�1j and vij+1. We an remove vij , and onnetvi�1j and vij+1 as in Fig. 3.3 (right).Now onsider a T-juntion with vertex vij at the enter, as illustrated in Fig. 3.4.The neighborhood of vij onsists of (up to a rotation) vij�1, vij+1, and vi�1 j, noneof whih is a vertex in the original graph. As in the ase of a bend, the problemis the absene of edges between vij�1 and vi�1 j, and between vi�1 j and vij+1, forwhih the assoiated bloks overlap. Also, vij must be a vertex of the original graph,and annot be eliminated. We an make the transformation illustrated in Fig. 3.4.However, the resulting graph is still not in X�, sine it has missing verties and doesnot satisfy the losure property. We use Corollary 3.2 to add verties to the graph asdepited in Fig. 3.1 (in reverse order, from () to (a)), so that the resulting graph isin X�.By Lemma 3.3, we need eah path replaing an edge of the planar graph to haveeven length. Beause of the extra spae we reated for our loal transformations, for
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ijv

ij−1v ij+1v

i−1jv

ijv Fig. 3.4. T-juntion transformation
Fig. 3.5. Odd-to-even length transformation to preserve independent set harateristis.eah edge going through an odd number of marks there is a straight line segmentgoing through at least 7 marks. We replae this 7 vertex segment with an 8 vertexsegment, as illustrated in Fig. 3.5, to guarantee that eah edge is replaed with aneven length path.These polynomial time transformations redue the independent set problem forubi planar graphs to an independent set problem in a graph in lass X�. ByLemma 2.1, the independent set problem on a graph in X� is equivalent to a MNDBproblem in a matrix, thus onluding our proof.Our proof is a template for the NP-ompleteness proofs of alternative substru-tures. Below, we generalize our result for arbitrary m � n bloks. In Setion 5, wewill use the same template to prove NP-ompleteness of the MNS problem for rossand diagonal bloks.Theorem 3.5. Problem MNDB is NP-omplete for m � n bloks for m;n � 2.Proof. We give a redution from MIS on ubi planar graphs. Without loss ofgenerality, we assume n � maxfm; 3g. Given a ubi planar graph GP = (VP ; EP ),we �rst embed the graph onto an jVP j�jVP j grid and then enlarge this grid by k = 100to get Gs. This allows our loal transformations to be mutually disjoint. For larityof presentation, in this proof we use v(i; j) to refer to vij . In Gs, we transform eahT-juntion that has two vertial edges to a T-juntion with two horizontal edges, asillustrated in Fig. 3.6(a). Then by using the transformation in Fig. 3.6(b), we makesure that eah path replaing an edge in GP has at least one horizontal edge awayfrom bends and T-juntions.In the next step, we map Gs to a larger 4mM � 4nN grid GL, so that v(i; j)on the small grid is mapped to v(i(4m � 2); 4j(n � 1)) on the larger grid. Thisseond enlargement allows us to ontrol the overlaps, and thus de�ne the paths of the
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(a) (b)Fig. 3.6. Transformations on Gs. (a) replae a T-juntion with two vertial edges with anotherwith two horizontal edges. (b) add a horizontal edge to eah path in GP .
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x−m+1,y+3(n−1)

x−2(m−1),y+2(n−1)

x−m+1,y+n−1Fig. 3.7. Replaing horizontal edges in Gs with (a) regular transformation and (b) its mirrorimage. Dark nodes are for original verties, and shaded nodes orrespond to auxiliary verties toreplae an edge between them. Dark edges orrespond to edges in GL, and retangles are also drawnto illustrate overlaps.graph. For eah horizontal edge (v(i; j); v(i; j+1)) in the enlarged Gs, we add vertiesv(i(4m�2)+m�1; (4j+1)(n�1)),v(i(4m�2)+2(m�1); (4j+2)(n�1)), and v(i(4m�2) + (m � 1); (4j + 3)(n � 1)), as illustrated in Fig. 3.7(a). A similar transformationis illustrated in Fig. 3.8 (a) for vertial edges. We use di�erent transformations forhorizontal and vertial edges, sine m might be 2. To avoid problems due to bends, weuse the mirror images of the transformation in Figs. 3.7(a) and 3.8(a), as illustratedin, respetively, Figs. 3.7(b) and 3.8(b).Due to our transformation in Gs, we only have T-juntions with two horizontaledges. For a T-juntion with a \downward" vertial edge, we an use transformationin Fig. 3.8(a) and mirror images of transformations in Figs. 3.7(a), as illustrated inFig. 3.9(a). For a T-juntion with an \upward" vertial edge, we use the transfor-mations in Figs. 3.8(b) and 3.7(a), as illustrated in Fig. 3.9(b). Due to our initialenlargement to obtain Gs, all these transformations will be mutually disjoint.We de�ne the edge set of GL, so that it is an indued subgraph of Xmn. Thelosure property is satis�ed by onstrution, thus GL is in X�mn. The redution willbe omplete when we guarantee that eah edge in the original 3-planar graph GP isreplaed by an even-length path in GL. If an edge in GP is replaed by an odd-lengthpath in GL, we replae a horizontal edge transformation in Fig. 3.7(a) with the onein Fig. 3.10, whih inserts four verties, instead of three. We an hoose this edge tobe far from a bend or a T-juntion to avoid unwanted overlaps.4. Approximation Algorithms. In this setion, we disuss approximation al-gorithms for the maximum nonoverlapping dense bloks problem. This problem hasbeen studied under di�erent names in the literature. The optimal tile salvage problemis de�ned as follows. Given a pN �pN region in the plane tiled with unit squares,some of whih are disfuntional, �nd a maximum number of funtional m� n retan-gles (in any orientation). This problem is equivalent to MNDB for square dense bloks.
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Fig. 3.8. Two transformations to replae vertial edges in Gs. (a) The regular vertial edgetransformation, (b) its mirror image and () version only used for an upward edge of a T-juntion.Dark nodes are for original verties, and shaded nodes orrespond to auxiliary verties to replaean edge between them. Dark edges orrespond to edges in GL, and retangles are also drawn toillustrate overlaps.
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Fig. 3.7(a) Fig. 3.7(a)(a) (b)Fig. 3.9. Transforming T-juntions (a) with an upward edge, (b) with a downward edge.Berman et al. [3℄ desribe a polynomial time approximation sheme for the optimaltile salvage problem, i.e. for any Æ > 0, � = O(1=pÆ logM), an (1� �)-approximationalgorithm running in time polynomial in N and exponential in Æ. Here M is theoptimal solution value. Their algorithm is based on maximum planar H-mathingwhih runs in O(N1+Æ) steps for Æ > 0. Baker [2℄ also has an algorithm for squaredense bloks, whih runs in O(8kN )-time and O(4kN ) spae and produes a (k�1)=k-approximation. Hohbaum and Maass also desribe an algorithm for square bloksthat gives an (k � 1)=k-approximation, but runs in O(m2k2Nk2) time to �nd m�mbloks on an N � N grid [8℄. While these algorithms are asymptotially eÆient,their pratiality will be limited for our purposes. We need algorithms that are ex-tremely fast and require very limited extra memory, sine our methods will be usedin a preproessing phase, whih may appear as late as the appliation runtime, andtheir runtimes need to be amortized by the speedup in subsequent operations.Arikati et al. [1℄ study this problem as the two-dimensional pattern mathing prob-lem, and desribe an approximation sheme inspired by the Lipton-Tarjan methodof omputing approximate independent sets in graphs. Their algorithm runs inO(N lgN ) time and produes solutions that are only O(1=plog logN ) away from
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x−2(m−1),y+2(n−1)+1x−2(m−1),y+2(n−1)

x,y+4(n−1)

x−m+1,y+3(n−1)+1x−m+1,y+n−1

x,yFig. 3.10. Even to odd length transformation.an optimal solution. They desribe another algorithm that uses the shifting strategyof Baker [2℄ and Hohbaum and Maas [8℄. Their algorithm deomposes the matrix intosuperolumns of width n�1, and then for eah i, 0 � i � k, the problem is separatedinto disonneted subproblems by removing superolumns with numbers ongruent toi mod (k+1). Eah subproblem an be solved optimally in linear time, by algorithmsthat �nd a maximum independent set in tree-width bounded graphs [5, 12℄. Arikatiet al. show that using this they an obtain a solution whih is within kk+1 of theoptimal.The speial ase for k = 2 of the Arikati et al. algorithm was also pointed out tous by one of the reviewers. The algorithm an be summarized as follows. Given aninput I to (2; 2)�MNDB, onstrut three new instanes I0; I1; I2 suh that instane Ijontains all bloks from I exept those with upper row index j mod 3. Eah instaneIj an then be solved optimally in linear time. Consider an optimal solution B to I.Every subset of B inluded in Ij is a solution to Ij , and sine eah blok from B isremoved from exatly one of the three new instanes, some instane Ij must inludeat least 2=3 of the bloks in B. Therefore returning the maximum of the optimumsolutions to I0; I1; I2 gives at least a 2=3�approximation. This elegant algorithmgives the same running time and approximation ratio as the algorithm presented inthis paper. Nevertheless, our 2=3�approximation algorithm an be implemented touse slightly less extra spae sine it only needs to maintain one independent set insteadof three.We begin by presenting a simple linear time 1=2-approximation to the MNDBproblem with 2�2 bloks whih an be generalized for all �-substrutures we present.The algorithm proeeds by �nding the leftmost blok in the topmost row, adding itto the urrent independent set, and then repeating the same operation after removingthis vertex and all its neighbors. At most two of the verties an be independent amongthose removed from the graph, and so we have a 1=2-approximation algorithm. In thissetion we show how to improve this approximation result by looking at an extendedneighborhood of the leftmost vertex in the uppermost row. Our algorithm is based onhoosing a set of verties in the neighborhood of the leftmost vertex in the uppermostrow, so that the size of this set is no less than 2=3 of a maximum independent setin the indued subgraph of those verties removed from the graph. This generates a�nal solution that is 2=3 of the optimal, sine all greedy deisions are at least 2=3 ofthe loal optimal. By Lemma 2.2, the graph after removing a vertex along with all itsneighbors still has the intersetion graph harateristis of the original by Lemma 2.2.We present the pseudoode of our algorithm below. The algorithm is based on theproedure BinTreeDeision, whih is depited as a binary deision tree in Fig. 4.1.In this tree, internal nodes indiate onditions, and the leaves list the verties addedto the independent set. Our algorithm traverses this deision tree from the root to aleaf, taking the left branh if the label vertex is in V , and the right branh otherwise.
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14 A. Pinar and V. VassilevskaLemma 4.1. Algorithm MNDB-APX runs in linear time in the number of bloksin the matrix.Proof. Eah iteration of the algorithm requires a traversal of the binary deisiontree from the root to a leaf, whih takes at most 8 steps, thus O(1) time. Also at leastone vertex is removed from the graph at eah iteration. Thus the time for the deisionproess is linear in the number of verties in the graph. The only other operation thata�ets the ost is �nding the leftmost vertex in the uppermost row. In a preproessingstep one an go through the matrix in a left to right fashion and store pointers to thebloks so that vij appears before vkl i� i < k or i = k and j < l. After this it takesonstant time to �nd the urrent leftmost vertex on the uppermost row.Lemma 4.2. The size of the maximal independent set returned by AlgorithmMNDB-APX is no smaller than 2=3 of the size of maximum independent set on theintersetion graph.Proof. The proof is based on ase by ase analysis. We show that BinTreeDei-sion(v) of Fig. 4.1 always returns an independent set S suh that N (S) ontains noindependent set larger than 1:5 jSj, where N (S) denotes the neighborhood of S, i.e.,the set of verties in S or adjaent to a vertex in S. Below we examine the binarysearh tree ase by ase:v5 62 V S = fvg, and v and its neighbors form a lique with MIS size 1.v5 2 Vv1 62 V By the losure property v2 62 V , and we have the following:v6 62 V S = fvg, and v and its neighbors form a lique with MIS size 1.v6 2 Vv4 2 V S = fv; v4g, and N(S) has MIS size at most 3.v4 62 V By the losure property u1 62 V . In this ase, if one of v9 orv8 is not in V , then S = fv5; v6g, sine their neighborhoodhas MIS size at most 3. Otherwise, v8; v9 2 V :v7 62 V This implies u2 62 V and:v10 62 V S = fv5; v6g and N(S) has MIS size at most 3.v10 2 V S = fv; v8; v9; v10g, and N(S) has MIS size at most 6.v7 2 Vv3 2 V S = fv; v3g, and N(S) has MIS size at most 3.v3 62 V S = fv; v7g, and N(S) has MIS size at most 3.v1 2 Vv2 2 V S = fv; v2g, and N(S) has MIS size at most 3.v2 62 V By the losure property v3 =2 V , andv7 62 V S = fv1g, v1 and its neighbors form a lique, and the MISis of size 1.v7 2 Vv4 2 V S = fv; v4g, and N(S) has MIS size at most 3.v4 62 V By the losure property u1 62 V , and if one of v8 or v9 isnot in V , then S = fv1; v5g, and N(S) has a MIS size atmost 3. Otherwise if v8; v9 2 V , then S = fv; v7; v8; v9g,and N(S) has MIS size at most 6.Theorem 4.3. Algorithm MNDB-APX is a linear time, 2=3-approximation al-gorithm for the MNDB problem.Proof. Follows diretly from Lemma 4.1 and Lemma 4.2.A generalization of our 2/3-approximation algorithm for larger bloks is still underinvestigation. We expet the runtime and the approximation ratio to depend on theblok size.



Finding nonoverlapping substrutures of a sparse matrix 150� a00 a01 a02a10 a11 a12a20 a21 a22 1A 0BBBB� a02a01 a12a00 a11 a22a10 a21a20 1CCCCA 0BBBB� a00a10 a01a20 a11 a02a21 a12a22 1CCCCA(a) (b) ()Fig. 5.1. Matrix rotations. (a) the original matrix, (b) after Rotation 1, () after Rotation 2.5. Alternative Substrutures. We have so far foused our disussions on �nd-ing dense retangular bloks in a matrix. In this setion, we will disuss generalizationsof our results to alternative substrutures that might be exploited to improve memoryperformane. We will �rst disuss diagonal bloks. Then we will introdue a rosssubstruture and its variants, and prove that the MNS problem is NP-omplete for�nding these substrutures.5.1. Diagonal Bloks. In many appliations, nonzeros of the sparse matrix arelined around the main diagonal in the form of long diagonals. This makes diagonalbloks a nie alternative to retangular bloks. We de�ne a diagonal blok as follows.Given an M �N matrix A = (a(i; j)), we say d(i; j) is an m� n diagonal blok in Ai� 8k; l; i � l < i+m; 0 � k < n; a(l + k; j + k) 6= 0:To �nd diagonal bloks in a sparse matrix, we an rotate the positions of the ma-trix entries to transform diagonal bloks to retangular bloks and vie versa, so thatour results for retangular bloks an be applied to diagonal bloks. Our rotationsare depited in Fig. 5.1, and de�ned as follows.Rotation 1: Given an M �N matrix A, its rotated matrix AR is an (M +N �1)�Nmatrix so that� AR(i+ N � j � 1; j) = A(i; j) for i = 0; 1; : : :M � 1 and j = 0; 1; : : :N � 1.� All other entries of AR are 0.Rotation 2: Given an M �N matrix A, its rotated matrix AR is an (M +N �1)�Nmatrix so that� AR(i+ j; j) = A(i; j) for i = 0; 1; : : :M � 1 and j = 0; 1; : : :N � 1.� All other entries of AR are 0.Theorem 5.1. Given matrix A, let A1 and A2 be its rotated matries underRotation 1 and Rotation 2, respetively. d(i; j) is a diagonal blok in A, if and onlyif d(i+N � j � 1; j) is a retangular blok in A1, and d(i; j) is a retangular blok inA, if and only if d(i+ j; j) is a diagonal blok in A2Proof. By de�nition d(i; j) is a diagonal blok in A if and only if for all k; l: 0 �k < m; 0 � l < n, A(i+k; j+l) 6= 0. This translates to A1(i+k+N�j�l�1; j+l) 6= 0with Rotation 1, and A2(i+ k+ j + l; j+ l) 6= 0. Neessity follows from the de�nitionof a diagonal blok, and suÆieny follows from the fat that the only nonzeros in A1and A2 are those de�ned by nonzeros in A.Corollary 5.2. Algorithm MNDB-APX, omposed with Rotation 1, is a lineartime 2=3-approximation algorithm for the problem of �nding a maximum number ofnonoverlapping diagonal bloks.



16 A. Pinar and V. Vassilevska0� xx x xx 1A 0� x xxx x 1A 0� x xxx x 1A(a) (b) ()Fig. 5.2. (a) Cross blok, (b) diagonal ross blok, () jagged ross blokCorollary 5.3. Given a matrix A and a positive integer K, deiding if A hasat least K nonoverlapping diagonal bloks is NP-omplete.5.2. Cross Bloks. Various regular substrutures in a sparse matrix an beexploited to improve memory performane of sparse matrix omputations. One pos-sibility is the ross bloks depited in Fig. 5.2(a). We will identify a ross blok withits enter, that is, we say (i; j) is a ross blok in a matrix A if A has nonzeros atpositions (i; j), (i; j � 1),(i � 1; j), (i; j + 1), and (i + 1; j). Below, we prove that�nding a maximum number of nonoverlapping ross bloks is NP-omplete by usingour proof of Theorem 3.4 as a template.Theorem 5.4. Given a matrix A and a positive integer K, deiding if A has atleast K nonoverlapping ross bloks is NP-omplete.Proof. This problem an be redued to the independent set problem, and thusit is in NP. For the NP-ompleteness proof we use a redution from the independentset problem on ubi planar graphs. First we embed the ubi planar graph ontoa grid and then enlarge the grid as we did for the proof of Theorem 3.4. We anreplae eah vertex on this grid with a ross pattern in the matrix. Formally, for anM �N grid, we de�ne a 2M + 1� 2N + 1 matrix, where grid point (i; j) is replaedby a ross entered at (2i + 1; 2j + 1) in the matrix. A does not have any othernonzeros besides those in ross bloks orresponding to vertex points. There are noross bloks in A, besides those representing grid points. Also observe that unlike thease for retangular bloks, bends and T-juntions do not ause any problems, sinethe rosses to the left and below the orner vertex of a bend do not overlap.The only problem is to make sure eah edge in G is replaed by an even lengthpath, for whih we use the transformation in Fig. 5.3. This transformation replaes ahain of odd length with a hain of even length to guarantee eah edge in G is replaedwith even length paths.We an use matrix rotations to redue the problems of �nding other bloks inFig. 5.2 (b) and () to the problem of �nding ross bloks as in Fig. 5.2(a). Forinstane, Rotation 1 transforms jagged rosses, whih are illustrated in Fig. 5.2() toregular rosses, and (i; j) is a diagonal ross blok in anM�N matrix, i� (i+N�j�1; j) is a jagged ross blok (Fig. 5.2()) in its rotated matrix. Similar transformationsan be used to transform ross bloks to other jagged bloks, and vie versa.Rotation 3, as de�ned below and depited in Fig. 5.4, transforms diagonal rossbloks of Fig. 5.2(b) to regular ross bloks.Rotation 3: Given an M � N matrix A, its rotated matrix AR is an (M + N � 1)�(M + N � 1) matrix so that� AR(i� j +N �1; i+ j) = A(i; j) for i = 0; 1; : : :M �1 and j = 0; 1; : : :N �1.� All other entries of AR are 0.These transformations an be used to prove NP-ompleteness of deiding if thereare a spei�ed number of nonoverlapping jagged and diagonal ross bloks in a matrix.



Finding nonoverlapping substrutures of a sparse matrix 170BBBBBB� xx x xxx x xxx x xx 1CCCCCCA 0BBBBBB� x x xx x x x x x xx x x x xxx x x x xx x x x x x xx x x 1CCCCCCA
Fig. 5.3. Odd- to even-length path transformation for ross bloks.0� a00 a01 a02a10 a11 a12a20 a21 a22 1A 0BBBB� a02a01 a12a00 a11 a22a10 a21a20 1CCCCA(a) (b)Fig. 5.4. Matrix Rotations. (a) the original matrix, (b) after Rotation 3.For brevity, we are not giving the details here. As an approximation solution, thegreedy algorithm that hooses the leftmost blok in the upper most row will yield a1=2�approximation algorithm for �nding ross bloks and all its variations.6. Open Problems. This work studies a new problem for the sparse matrixomputations ommunity, and brings forth many open problems. One interestingfamily of problems is the design of heuristis for larger bloks and di�erent substru-tures, and developing better approximation algorithms. As we disussed in Setion 4,it may be possible to generalize our 2=3-approximation algorithm for larger bloks,where the runtime omplexity is likely to depend on the blok size. Another openproblem is whether one an improve the approximation ratio by looking at a largerneighborhood of the leftmost vertex of the uppermost row. Finally, one may searh fordi�erent heuristis to apply to di�erent dense substruture problems. For instane,although the greedy left-uppermost blok heuristi still gives a 1=2-approximation,the neighborhood struture of the ross blok is fairly di�erent from that of the ret-angular blok, and thus our 2=3-approximation algorithm annot be applied diretly.Another approah to reduing memory indiretion is seletively replaing stru-tural zeros of the matrix with numerial zeros. Doing this would improve memoryperformane and may result in signi�ant speedups, even though the number of oat-ing point operations may inrease [15℄. This tehnique alls for another interestingombinatorial problem. In this ase, we need to hoose bloks to make sure all nonze-ros are overed, and we try to do this by using as few bloks as possible. We all thisproblem the minimum blok over problem and de�ne it as follows.Given a sparse matrix A, and an oriented substruture �, plae a



18 A. Pinar and V. Vassilevskaminimum number of substrutures on A, so that all its nonzeros areovered.Fowler et al. [6℄ proved that this problem is NP-omplete. Nevertheless, goodapproximation algorithms for overing sparse matries would be valuable.Finally, in this paper we onsidered �nding only one spei�ed struture in thematrix. However, it is possible to split a matrix into three or more matries (e.g.,A = A2d +A1d +As), so that eah matrix ontains a di�erent substruture. Vudu didsome empirial work on splitting into multiple matries [14℄. In suh a deomposi-tion, the objetive is minimizing the total number of bloks in all matries. Clearly,this problem is muh harder, and even good approximation algorithms (provably orpratially) would be valuable.7. Conlusion. We studied the problem of �ndingmaximumnumber of nonover-lapping substrutures in a sparse matrix, whih we alled the maximum nonoverlap-ping substrutures problem. Suh substrutures an be exploited to improve memoryperformane of sparse matrix operations by reduing the number of memory indi-retions. We foused on m � n dense bloks as a substruture (maximum nonover-lapping dense bloks problem) due to their frequeny in sparse matries arising invarious appliations, and to their e�etiveness in dereasing extra load operations.We investigated the relation between the maximum independent set problem and themaximumnonoverlapping substrutures problem, and de�ned a lass of graphs wherethe independent set problem is equivalent to the maximum nonoverlapping densebloks problem. We used this relation to prove the NP-ompleteness of the maximumnonoverlapping dense bloks problem. Our proof used a redution from the maximumindependent set problem on ubi planar graphs and adopted orthogonal drawings ofplanar graphs. We disussed generalizations of our results to alternative substruturesand observed the relation between diagonal and retangular bloks to show that thetwo MNS problems are equivalent and one an be redued to the other by a matrixtransformation. We also disussed ross bloks and proved that the MNS problem isNP-omplete for ross bloks.We presented an approximation algorithm for the maximumnonoverlapping densebloks problem for 2 � 2 bloks. Our algorithm requires only linear time and spae,generates solutions whose sizes are within 2=3 of the optimal, and an be used toapproximate MNS on diagonal bloks as well.Aknowledgments. We are grateful to the three anonymous referees for theirvaluable omments on the earlier version of this paper.REFERENCES[1℄ S. R. Arikati, A. Dessmark, A. Lingas, and M. V. Marathe, Approximation algorithms formaximum two-dimensional pattern mathing, Theoretial Computer Siene, 255 (2001),pp. 51{62.[2℄ B. Baker, Approximation algorithms for np-omplete problems on planar graphs, in Pro. 24thIEEE Symp. on Foundations of Computer Siene, 1983, pp. 265{273.[3℄ F. Berman, D. Johnson, T. Leighton, P. Shor, and L. Snyder, Generalized planar math-ing, Journal of Algorithms, 11 (1990), pp. 153{184.[4℄ A. J. C. Bik and H. A. G. Wijshoff, Automati nonzero struture analysis, SIAM Journalof Computing, 28 (1999), pp. 1576{1587.[5℄ H. L. Bodlaender, Dynami programming on graphs of bounded treewidth, Leture Notes inComputer Siene, 317 (1988), pp. 105{118.[6℄ R. J. Fowler, M. S. Paterson, and S. L. Tanimoto, Optimal paking and overing in theplane are np-omplete, Information proessing Letters, 12 (1981), pp. 133{137.
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